756
Views
28
CrossRef citations to date
0
Altmetric
Research Articles

In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets

, , &
Pages 723-731 | Received 05 Apr 2016, Accepted 18 Jul 2016, Published online: 21 Aug 2016
 

Abstract

Context: Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge.

Objective: The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel.

Materials and methods: Model drugs were coated in fluidized bed. Disintequik™ ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment.

Results and discussion: Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3 min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R ≥ 0.970).

Conclusion: Drug particle coating with Eudragit® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.

Acknowledgements

The authors gratefully acknowledge Kerry (USA) and Evonik (Germany) for the kind donation of Disintequik™ ODT and Eudragit® E PO.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

This work was supported by the Project No. TR 34007 and funded by the Ministry of Education, Science and Technological Development, Republic of Serbia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.