491
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Preparation and evaluation of curcumin-loaded self-assembled micelles

, , , , &
Pages 563-569 | Received 23 Apr 2017, Accepted 08 Nov 2017, Published online: 29 Nov 2017
 

Abstract

Objective: Curcumin being used to treat various chronic diseases while its poor bioavailability issue limited its wide clinical application as a therapeutic agent. The aim of this work was to prepare curcumin-loaded self-assembled micelles using soluplus and solutol®HS15 (SSCMs) to enhance curcumin’s solubility and thus oral bioavailability.

Methods: Optimum formulation was investigated and the optimized ratio of drugs and excipients was obtained and the SSCMs were prepared via ethanol solvent evaporation method. The optimal SSCMs were characterized by transmission electron microscopy, drug content analysis including loading efficiency (LE%) and entrapment efficiency (EE%), and the cumulative amount of curcumin released from the micelles were all calculated using HPLC method. The in vitro cytotoxicity and the permeability of SSCMs were measured by Caco-2 cell monolayers and the oral bioavailability was evaluated by SD rats.

Key findings: The solubility of curcumin in self-assembled micelles was dramatically increased by 4200 times as compared to free curcumin. Caco-2 cells transport experiment exhibited that while soluplus and solutol®HS15 were self-assembled into micelles, it could not only promote the permeability of curcumin across membrane for better absorption, but also could restrain the curcumin pumped outside due to the role of P-gp efflux mechanism of soluplus and solutol®HS15. Furthermore, the prepared SSCMs formulation was almost nontoxic and had safety performance on Caco-2 cells model. Moreover, curcumin’s oral bioavailability of SSCMs formulation in SD rats had doubled than that of free curcumin.

Conclusions: The prepared SSCMs were characterized by PS, PDI, LE%, EE% data analysis. After the soluplus and solutol®HS15 were self assembled into micelles, both the solubility and membrane permeability of curcumin were evaluated to have been enhanced, as well as the effect of efflux pump of curcumin was inhibited, hence to promote oral absorption and generate an increased bioavailability.

Graphical Abstract

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

The authors would like to acknowledge the fundamental research funds for this research (No. 2015-YY-011 and BRA2015494). The authors would also like to acknowledge the state key laboratory of natural medicines of China Pharmaceutical University for their testing installations and equipments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.