395
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Development of sustained release gastro-retentive tablet formulation of nicardipine hydrochloride using quality by design (QbD) approach

, &
Pages 787-799 | Received 31 Jul 2017, Accepted 29 Nov 2017, Published online: 18 Dec 2017
 

Abstract

The objective of the present study was to develop a sustained release gastro-retentive (SRGR) tablet formulation of nicardipine hydrochloride (HCl) for once-a-day dosing using the quality by design (QbD) approach. The quality target product profile of nicardipine HCl SRGR tablet formulation was defined, and critical quality attributes (CQAs) were identified. Potential risk factors were identified using a fish bone diagram and failure mode effect analysis (FMEA) tool and screened by the Plackett–Burman design, and finally nicardipine HCl SRGR tablet formulation was optimized using the Box–Behnken design. The tablets were prepared by a direct compression technique using polymers such as hydroxypropylmethylcellulose (HPMC K15M), glyceryl behenate, alone or in combinations and other standard excipients. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of polymers and sodium bicarbonate on the drug release profile and floating properties were investigated as these parameters are likely to affect the desired once-a-day dosing regimen and finally the therapeutic efficacy of SRGR drug delivery systems. It was observed that formulation variables X1: Glyceryl behenate (mg/tab) and X2: HPMC K15M (mg/tab) strikingly influenced the drug release (%) (Y1), whereas floating lag time (min) (Y2) was significantly impacted by the formulation variable X3: Sodium bicarbonate (mg/tab). A design space plot within which the CQAs remained unchanged was established at a lab scale. In conclusion, this study demonstrated the suitability of a glyceryl behenate-HPMC K15M polymer combination along with sodium bicarbonate to achieve SRGR tablet formulation for once-a-day dosing of nicardipine HCl using the systematic QbD approach.

Acknowledgments

The authors wish to thank Prof. Avish Maru, Principal, Kalwan College of Pharmacy, Kalwan, India and Wockhardt Research Centre, Aurangabad (M.S.), India, for providing constant support and enthusiasm to complete this work.

Disclosure statement

The authors report no conflict of interest. The authors alone are responsible for the content and writing of this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.