361
Views
54
CrossRef citations to date
0
Altmetric
Research Article

PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells

, , , &
Pages 1377-1384 | Received 19 Dec 2017, Accepted 09 Mar 2018, Published online: 23 Mar 2018
 

Abstract

Denderimer-modified magnetic nanoparticles are a promising drug delivery nanosystem which can improve the therapeutic efficacy of chemotherapy drugs and can also be beneficial as magnetic resonance (MR) images contrast agent. The present study introduces the preparation and characterization of the potential therapeutic efficiency of curcumin (CUR)-loaded denderimer-modified citric acid coated Fe3O4 NPs. Polyamidoamine (PAMAM, generation G5) was used to encapsulate citric acid coated Fe3O4 nanoparticles. The successful preparation of CUR-loaded nanocarriers were confirmed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM) techniques. The loading capacity and encapsulation efficiency of CUR molecules were 12 ± 0.03% and 45.58 ± 0.41%, respectively. The anticancer effect of void CUR and CUR-loaded nanocarriers were compared to each other by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on treated MCF-7 cell line. It can be concluded that application of nanoparticles can be more effective strategy for controlled and slow release of CUR in human breast cancer treatment.

Graphical Abstract

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was supported financially by the Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.