244
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology

, , , , , , , & show all
Pages 1591-1597 | Received 09 Oct 2017, Accepted 28 May 2018, Published online: 14 Aug 2018
 

Abstract

The objective of this study was to develop agomelatine (AGM) intramuscular sustained release PLA microparticles by using solvent evaporation combined with wet milling technology. The final preparation had a regular and homogeneous particle size of approximately 35 µm, as measured by laser diffraction particle size analysis and scanning electron microscopy (SEM). The drug was confirmed to be within the carrier in an amorphous state through differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD) experiments. Additionally, Fourier transform infrared spectroscopy (FT-IR) analysis was applied to confirm that there was hydrogen bonding between the drug and polymer at the molecular level. In vitro release experiments indicated that the drug could achieve long-term sustained release over the period of one month, with only a 3.07% burst release, due to the involvement of the polymer and removal of drug adsorbed on the surface during the wet grinding process. The dominant release mechanism was considered to be diffusion of the drugs in the initial period. Following this, with the hydrolysis of PLA to form a colloidal viscous layer, drug release is due to the combined effect of diffusion and erosion of the polymer matrix. Additionally, drug release behavior is closely related to the degradation mechanism of the polymer carrier. The results suggest that AGM could be developed as a potential delivery system for long-acting intramuscular administration with extensive application prospects.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by the National Natural Science Foundation of China [No. 81673378] and the National Basic Research Program of China [973 Program, No. 2015CB932103].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.