340
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessment of lisdexamfetamine dimesylate stability and identification of its degradation product by NMR spectroscopy

, , , &
Pages 139-146 | Received 03 May 2018, Accepted 17 Sep 2018, Published online: 01 Nov 2018
 

Abstract

Lisdexamfetamine dimesylate (LDX), a long-acting prodrug stimulant indicated for the treatment of the attention-deficit/hyperactivity disorder (ADHD), was subjected to forced degradation studies by acid and alkaline hydrolysis and the degradation profile was studied. To obtain between 10–30% of degraded product, acid and alkaline conditions were assessed with solutions of 0.01 M, 0.1 M, 0.5 M, and 1 M of DCl and NaOD. These solutions were analyzed through 1 H NMR spectra. Acid hydrolysis produced no degradation in 0.01 M and 0.1 M DCl and 4.38%, 9.69%, and 17.75% of degradation LDX, respectively, in 0.5 M, 1 M (4h) and 1 M (4 + 12 h) DCl. And alkaline hydrolysis produced no degradation in 0.01 M and 0.1 M DCl and a degradation LDX extension of 8.5%, 14.30%, and 22.91%, respectively, in 0.5 M, 1 M (4h) and 1 M (4 + 12 h) NaOD. LDX solutions subjected to 1 M (4 + 12 h) acid and alkaline hydrolysis were evaluated by NMR spectra (1 H NMR, 13 C NMR, HSQC and HMBC). LDX degradation product (DP) was identified and its structure elucidated as a diastereoisomer of LDX: (2R)-2,6-diamino-N-[(2S)-1-phenylpropan-2-yl] hexanamide without their physical separation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.