248
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Levofloxacin-loaded naturally occurring monoterpene-based nanoemulgel: a feasible efficient system to circumvent MRSA ocular infections

, &
Pages 1787-1799 | Received 09 Oct 2019, Accepted 03 Sep 2020, Published online: 15 Sep 2020
 

Abstract

Staphylococcus aureus is a leading cause of ocular keratitis worldwide, and the upsurge of Methicillin-resistant Staphylococcus Aureus (MRSA) strains necessitated the development of new antimicrobial agents. D-limonene is the major constituent of oil extracted from citrus peel, which has been utilized for its gastroprotective, antifungal, antitumor, and antibacterial effects. The present study aimed to develop an effective in-situ ocular limonene-based nanoemulgel to enhance the efficacy of fluoroquinolones against MRSA associated ocular biofilm infection. The nanoemulsion composed of limonene, Tween®80, propylene glycol at a ratio of 5:4:1 loaded with levofloxacin. The formulated levofloxacin-loaded limonene-based nanoemulsion physiochemical properties namely; droplet size, polydispersity index, zeta potential, and in-vitro drug release were studied and stability over three months was assessed. Furthermore, in-vitro antimicrobial susceptibility was investigated on biofilm-forming MRSA strain through kinetics of killing and biofilm assay. The in-situ nanoemulgel ocular irritation was studied by HET-CAM test. The results demonstrated that levofloxacin-loaded limonene-based nanoemulsion had a particle size of 119 ± 0.321 nm with improved eradicating efficacy of MRSA biofilm, where the MIC of the loaded nanoemulgel was 3.12 mg/ml significantly less than that of drug alone (6.25 mg/ml). HET-CAM test showed no signs of hemorrhage, coagulation, or lysis for the loaded nanoemulgel same as sodium chloride solution (negative control) where its irritation score was zero compared to 9.87 for the positive irritant group (1%w/v sodium lauryl sulfate). In conclusion, the current investigation provided a strong foundation for further studies of limonene nanoemulgel as a potential complementary therapeutic agent against resistant bacterial strains.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.