102
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Implementation and in vitro characterization of calcium-free in situ gelling oral reconstituted suspension for potential overweight treatment

, &
Pages 36-50 | Received 24 Jun 2020, Accepted 10 Nov 2020, Published online: 14 Dec 2020
 

Abstract

In this work, oral granules that were easily dissolved in aqueous dispersion, were prepared. These oral suspensions were formulated with sodium alginate (AlgNa), chitosan (CHI) and sodium carboxymethylcellulose (CMC Na). The gels were formulated by pouring the suspensions into 150 ml of simulated gastric fluid (SGF) pH 1.2 at 37° C. The in-situ gelling mechanism was based on the ionization states of the three biopolymers as a function of the pH of the medium. Fourier transform infrared analysis of gels confirmed the interactions between alginate and chitosan. According to the scanning electron microscopy analysis, the gels were characterized by a firm and homogeneous structure. The obtained values of the elastic storage modulus, G', varied between 10 1 and 10 7 Pa. The eliminated volume of the unabsorbed liquid by the gels fluctuated between 25% and 55% of the total liquid volume. The quality of the gels was improved when a maximum concentration of alginate ( 4 g / 100 ml ) , a minimum concentration of chitosan ( 0.5 g / 100 ml ) and a maximum amount of carboxymethylcellulose ( 4 g / 100 ml ) were used. The value of their elastic modulus, G' was around 10 5 Pa and the residual unabsorbed volume of the liquid was 25% of the total liquid volume. According to the obtained results, the prepared gels could induce a feeling of fullness by stimulating the gastric distension and they could potentially be applied as anti-obesity medication.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.