145
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Multi-sensitive curcumin-loaded nanomicelle based on ABC-CBA block copolymer for sustained drug delivery

, ORCID Icon &
Pages 552-561 | Received 31 Aug 2020, Accepted 31 Jan 2021, Published online: 25 Mar 2021
 

Abstract

A type of multi-sensitive ABC-CBA block copolymer with thermal, glutathione and pH-responsive bonds was synthesized via ring opening polymerization along with cationic ring opening mechanisms. In continuum, the synthesized copolymer strands self-assembled into nanomicelles. The linear copolymer is comprised poly (methoxy ethylene glycol)-b-poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone)-cystamine (i.e. [mPEG-b-PEtOz-PCL]2-Cys) and the curcumin was encapsulated inside the micelles mostly through hydrophobic interaction. The H-NMR, FTIR and GPC analysis were applied to identify the composition structure of the copolymer. The critical micelle concentration (CMC) value was achieved favorably 0.01 mg/mL for the synthesized copolymer. The morphology and particle size of solid nanocarrier were characterized by DLS, Zeta potential, AFM, TEM, and SEM micrographs. The drug loading content for the curcumin was attained 13.3% (w/w), and the entrapment efficacy of the drug in nanocarrier was obtained 79 percent. The in vitro release profile of the drug-loaded micelle was investigated by exposure to different pH, temperature and reduction circumstances, stimulated by tumor microenvironment conditions. The cell viability assay of the drug-loaded nanocarrier demonstrates high cytotoxicity toward HDF cells, while the drug-free nanocarrier has trifling toxicity and good biocompatibility. Therefore, according to the pleasant output of the research, this novel nanomicelle based on ABC-CBA block copolymer can be carried out effectively as an efficient nanocarrier in targeted drug delivery.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was financial supported by University of Kashan [986028] which is greatly acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.