234
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Formulation and performance evaluation of polymeric mixed micelles encapsulated with baicalein for breast cancer treatment

, , , , , & show all
Pages 1512-1522 | Received 04 Jun 2021, Accepted 11 Nov 2021, Published online: 06 Dec 2021
 

Abstract

The present study is aimed to formulate baicalein-loaded mixed micelles to enhance the solubility and oral bioavailability. Baicalein encapsulated D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and pluronic F127 (F127) combined micelles were prepared and investigated for anticancer effect. The optimized formulation contains 25.04 ± 0.24 nm mean particle size of micelles with a zeta potential value of −4.01 ± 0.5 mV. The calculated entrapment efficiency percentage of baicalein within the micellar structure was 83.43 ± 0.13% and the in vitro release of baicalein from micelles displayed a sustained release profile at pH 7.4. The incorporation of baicalein within micelles core was also confirmed by FTIR analysis of formulation, which hardly represents the characteristic peak of baicalein, indicating successful entrapment of the drug. In vitro cell culture experiments revealed baicalein-loaded micelles significantly enhanced cellular uptake and cytotoxicity against MDAMB-231 cell lines in comparison to free baicalein. Additionally, as compared to free baicalein, baicalein micelles demonstrated greater apoptosis-inducing potential while the results of the cell cycle study exhibited arrest of cells at the G0/G1 phase of the cell cycle. Results of ROS (reactive oxygen species) and MMP (mitochondrial membrane potential) assay revealed the ROS-dependent mitochondrial-mediated apoptosis pathway utilized by developed formulation to inhibit cell proliferation. Thus, the developed nano micelles can serve as a potent carrier system for baicalein against breast cancer.

Acknowledgments

Author Shraddha Srivastava is thankful to CSIR HRDG for providing the CSIR-SRF fellowship. The authors would like to acknowledge SAIF division of CSIR-CDRI, Lucknow for flow cytometry study and for TEM study and Material Research Centre Department, MNIT, Jaipur for providing FTIR facility. This is CSIR-CDRI communication 10316.

Disclosure statement

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.