412
Views
26
CrossRef citations to date
0
Altmetric
Articles

The potential of glauconitic sandstone as a potassium fertilizer for olive plants

, , &
Pages 983-993 | Received 22 Sep 2010, Accepted 20 Jan 2011, Published online: 18 Jul 2011
 

Abstract

This study evaluated the potential of glauconitic sandstone as a fertilizer for supplying potassium to plants. The glauconite sandstone (Maraveh, Iran), as analyzed by X-ray fluorescence, was composed of 2.24% potassium oxide plus high contents of silicon, aluminum and ferric oxide. One-year old olive trees, Olea europaea L., were grown in sand or hydroponic culture in a greenhouse under three potassium treatments. Modified Hoagland nutrient solutions based on potassium treatments including 0.5 mM K+, 5 mM K+ and 400 g glauconitic sandstone powders (per 10 L in hydroponics and per 2.5 L in sand instead of K+ supply) were used in both cultures. Plants grown under the three different potassium treatments did not show any potassium deficiency symptoms. In the sand culture, growth and potassium content were higher in plants fed with 5 mM potassium than with the other two potassium treatments. Growth retardation and decreased potassium content in plants fed with 0.5 mM potassium were more severe in the hydroponic culture than in the sand culture. However, plants fed with 400 g glauconitic sandstone showed higher growth in the hydroponic culture than the sand culture. Thus, glauconitic sandstone has the ability to release potassium and can be utilized in combination with other potassium fertilizers.

Acknowledgements

We thank Golestan University Deputy of Research and Office of Higher Education for financial support to Ehsan Karimi in the form of grants for MSc research projects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.