129
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the spatial pattern of surface soil water content of a karst hillslope in Southwest China using a state-space approach

, , &
Pages 1800-1813 | Received 05 Sep 2016, Accepted 13 Mar 2017, Published online: 28 Mar 2017
 

ABSTRACT

This study aims to evaluate the effects of soil physicochemical properties and environmental factors on the spatial patterns of surface soil water content (SWC) based on the state-space approach and linear regression analysis. For this purpose, based on a grid sampling scheme (10 m × 10 m) applied to a 90 m × 120 m plot located on a karst hillslope of Southwest China, the SWC at 0–16 cm depth was measured 3 times across 130 sampling points, and soil texture, bulk density (BD), saturated hydraulic conductivity (Ks), organic carbon (SOC), and rock fragment content as well as site elevation (SE) were also measured at these locations. Results showed that the distribution pattern of SWC could be more successfully predicted by the first-order state-space models (R2 = 67.5–99.9% and RMSE = 0.01–0.14) than the classic linear regression models (R2 = 10.8–79.3% and RMSE = 0.11–0.24). The input combination containing silt content (Silt), Ks, and SOC produced the best state-space model, explaining 99.9% of the variation in SWC. And Silt was identified as the first-order controlling factor that explained 98.7% of the variation. In contrast, the best linear regression model using all of the variables only explained 79.3% of variation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [51379205]; National Basic Research Program of China [2015CB452703].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.