771
Views
101
CrossRef citations to date
0
Altmetric
Original Articles

Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.)

, , , , &
Pages 1889-1899 | Received 19 Sep 2016, Accepted 27 Mar 2017, Published online: 12 Apr 2017
 

ABSTRACT

We examined the role of jasmonic acid (JA) in faba bean under cadmium (Cd) stress, which reduces the growth, biomass yield, leaf relative water content (LRWC) and pigment systems. Hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde [MDA]) levels increased by 2.78 and 2.24-fold, respectively, in plants under Cd stress, resulting in enhanced electrolyte leakage. Following foliar application to Cd-treated plants, JA restored growth, biomass yield, LRWC and pigment systems to appreciable levels and reduced levels of H2O2, MDA and electrolyte leakage. Proline and glycine betaine concentrations increased by 5.73 and 2.61-fold, respectively, in faba bean under Cd stress, with even higher concentrations observed following JA application to Cd-stressed plants. Superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase levels rose by 87.47%, 130.54%, 132.55% and 37.79%, respectively, with Cd toxicity, with further enhancement of antioxidant activities observed following foliar application of JA. Accumulation of Cd in roots, shoots and leaves was also minimized by external supplementation of JA. In conclusion, JA mitigates the negative impacts of Cd stress in faba bean plants by inhibiting the accumulation of Cd, H2O2 and MDA, and by enhancing osmolyte and antioxidant activities that reduce oxidative stress.

Acknowledgement

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding (Research group No. RGP-199).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the King Saud University [Research group No. RGP-199].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.