271
Views
6
CrossRef citations to date
0
Altmetric
Articles

Relationship between soil chemical properties and microbial metabolic patterns in intensive greenhouse tomato production systems

ORCID Icon, &
Pages 1334-1343 | Received 01 Feb 2019, Accepted 08 Sep 2019, Published online: 17 Sep 2019
 

ABSTRACT

Intensive greenhouse production involving excessive fertilizer and organic manure application rates may affect soil chemical and biological quality. Soil samples from 50 commercial greenhouses for tomato production in northern China were collected for the evaluation of the status of soil fertility and identification of the soil chemical factor that exerts the strongest influence on microbial functional diversity. The soil total nitrogen content showed high soil fertility and was 68% higher than 1000 mg kg−1 and 14% higher than 1500 mg kg−1. Differential soil pH values caused statistically significant shifts in microbial metabolic activity (average well color development, AWCD) and Shannon’s diversity index using BiologTM ECO plates assay. The highest soil microbial functional diversity was observed at near neutral pH values. When individual data points were plotted against soil organic matter (SOM), significant positive associations with soil microbial biomass nitrogen and AWCD were observed. The canonical correspondence analysis confirmed that shifts in the soil microbial functional diversity were associated with changes in pH, total nitrogen, and SOM. This study indicated that excessive fertilization changed the community-level physiological profile of the soil microorganisms, and this effect can be a consequence of changes in soil pH under intensive greenhouse management.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was funded by the National Natural Science Foundation of China [41571250].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.