559
Views
14
CrossRef citations to date
0
Altmetric
Articles

Phosphorus solubilization in the rhizosphere and its possible importance to determine phosphate plant availability in soil. A review with main emphasis on German results

, , , &
Pages 119-138 | Received 15 Apr 2009, Accepted 17 Apr 2009, Published online: 27 Aug 2009
 

Abstract

Limited fertilization adapted to plant demand is of high economical and ecological relevance. This requires a reliable analysis of plant available P, based on knowledge of phosphorus dynamics in soils and P mobilization by plants. On chernozem-like soils, as well as under dry conditions, the double-lactate (DL) phosphate extraction methods apparently do not adequately reflect the P uptake ability of plants. This paper summarizes rhizosphere processes that affect P availability partly by reference of selected own experiments. Root exudates increased the double-lactate (DL) extractable P amount of soils in sterile and non sterile cultures. Microbial colonisation increased both the exudate amount and the specific ability of exudates to solubilize P. In spite of rapid exudate turnover, DL-P solubility was increased. Sugars released from P-deficient plants increased the P solubilizing ability of a bacterial strain (Enterobacter radicincitans), perhaps by changing bacterial acid production. Root exudates solubilized more P from soil than lactate extracts did. An investigation of physiological processes in the rhizosphere could contribute to a better understanding of nutrient availability and perhaps lead to the development of extraction methods that better reflect the availability of soil phosphorus to plants. Connecting field experiments with basic studies offers the opportunity to better understand plant nutritional processes to realize an effective and sustainable agriculture.

Acknowledgements

The authors thank Prof. Dr J. Kovar, Ames, USA, for his help to correct the English text.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.