101
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Precipitated CaCO3 with Unique Crystalline Morphology Prepared from Limestone

, , , , &
Pages 202-207 | Received 03 Jan 2015, Accepted 14 Aug 2015, Published online: 14 Dec 2015
 

Abstract

A carbonation method has been applied to induce the precipitation reaction of calcium carbonate powders with unique morphology. The reaction was strongly influenced by temperature, pH, CO2 gas flow rate and flow duration. Characterization of the as-prepared CaCO3 by XRD and SEM demonstrated that the vaterite phase was mostly formed at low temperature and CO2 gas flow rate. Phase transformation from vaterite to calcite phases at room temperature was initiated by the formation of calcite structure in ¼ spherical shapes and was followed by transformation to the rhombic structure. The highest growth of calcite structure, resulting in purity up to 98.6%, occurred at the CO2 gas flow rate of 5 SCFH in 36 s. Aragonite particles were produced at CO2 gas flow rate of 0.5 and 5 SCFH to yield 99.2% and 72.3% phase purities, respectively, with needle-like morphology at a higher temperature of 85oC. Furthermore, the reaction with lower CO2 gas flow rate (2 SCFH) led to the formation of aragonite with a flower-like morphology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.