610
Views
106
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Analysis of a Slider Bearing with a Heterogeneous Slip/No-Slip Surface

&
Pages 328-334 | Published online: 12 Aug 2010
 

Abstract

The behavior of a fluid-film bearing depends on the boundary conditions at the interfaces between the liquid and the solid bearing surfaces. For almost all solid surfaces, the no-slip boundary condition applies. However, a number of researchers have recently found that slip can occur with specially engineered surfaces. These include molecularly smooth surfaces and surfaces with micron-scale patterns. By constructing an engineered heterogeneous surface on which slip occurs in certain regions and is absent in others, the flow in the liquid film of a bearing can be altered, and such characteristics as load support and friction can be improved. In the present study, a numerical analysis of a slider bearing with such an engineered slip/no-slip surface is analyzed. Slip is assumed to occur when a critical shear stress is exceeded and follows the Navier relation. The results show that with a critical shear stress of zero, a significant increase in load support and decrease in friction can be achieved with an appropriate surface pattern. With nonzero values of critical shear stress, an instability occurs over a range of speeds. At speeds above this range, the bearing behaves similar to the case with zero critical shear stress, while below this range it behaves like a conventional bearing.

ACKNOWLEDGMENTS

The support of the Taiho Kogyo Tribology Research Foundation and the Georgia Power Company is gratefully acknowledged.

Presented at the 59th STLE Annual Meeting in Toronto, Ontario, Canada May 17-20, 2004

Final manuscript approved January 7, 2004

Review led by Luis San Andres

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.