57
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Stability Margin of a Roughened Hole-Entry Hybrid Journal Bearing System

, &
Pages 140-146 | Received 17 May 2004, Published online: 25 Mar 2008
 

Abstract

The present work describes a theoretical investigation into the effect of surface roughness on the stability margin of an orifice-compensated, hole-entry hybrid journal bearing system. A modified form of the average Reynolds equation is used for the solution of a lubricant flow field in the clearance space of a rough journal bearing system. The effects of surface roughness parameter (Λ), variance ratio (V̄rj), and the surface orientations (γ) on the bearing flow, load-carrying capacity, and stability threshold speed margin are studied. The study indicates that the bearing configurations having surface roughness on one of the opposing surfaces (stationary or moving roughness) show an opposite trend between stability threshold speed margin and load-carrying capacity. However, the bearing configurations having transverse- and isotropic-type roughness patterns on both bearing and journal surfaces provide an improved value of both stability threshold speed margin and load-carrying capacity only when the surface roughness has a variance ratio value between 0.49 and 0.59 for the transverse roughness pattern and between 0.59 and 0.84 for the isotropic roughness pattern.

Notes

Presented at the 59th STLE Annual Meeting in Toronto, Ontario, Canada

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.