190
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation on microscopic mechanisms of high-Curie temperature PMN-PH-PT piezoelectric ceramics

, , , , &
Pages 83-92 | Received 14 Dec 2021, Accepted 30 Apr 2021, Published online: 06 Nov 2021
 

Abstract

High-Curie temperature (TC) piezoelectric ceramics 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) were fabricated via the citrate method, which shows pure perovskite structure. The ceramics have composition locating at the rhombohedral side around the morphotropic phase boundary (MPB), and present enhanced electrical properties as compared with those prepared by the solid-state reaction method via the columbite precursor technique. Temperature-dependent Raman spectroscopy not only proves the occurrence of the ferroelectric to paraelectric phase transition around TC, but also detects the successive phase symmetry transitions, which correlate with the polar nanoregions (PNRs) or the coexistence of multiple ferroelectric phases. Large quantities of fine stripe nanoscale ferroelectric domains are observed by piezoresponse force microscopy (PFM) in the 0.15PMN-0.38PH-0.47PT ceramics, which form the larger micron island domains. Temperature-dependent Raman spectra and PFM results indicate that the excellent dielectric, ferroelectric and piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics can be attributed to either the existence of the PNRs with low symmetry or the multiple-ferroelectric-phases coexistence around room temperature and the fine stripe ferroelectric domains.

Additional information

Funding

The authors thank the National Natural Science Foundation of China (No. 51577015), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.