63
Views
14
CrossRef citations to date
0
Altmetric
SUPPLEMENT: TENTH INTERNATIONAL MAGNESIUM SYMPOSIUM

Effects of Magnesium on Cardiac Excitation-Contraction Coupling

, PhD, & , PhD
Pages 514S-517S | Received 05 Aug 2004, Published online: 18 Jun 2013
 

Abstract

Objective: Magnesium regulates a large number of cellular processes. Small changes in intracellular free Mg2+ ([Mg2+]i) may have important effects on cardiac excitability and contractility. We investigated the effects of [Mg2+]i on cardiac excitation-contraction coupling.

Methods: We used our ionic-metabolic model that incorporates equations for Ca2+ and Mg2+ buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na+-K+ pump, sarcolemmal and sarcoplasmic Ca2+ pumps).

Results: Model results indicate that variations in cytosolic Mg2+ level might sensitively affect diastolic and systolic Ca2+, sarcoplasmic Ca2+ content, Ca2+ influx through L-type channels, efficiency of the Na+/Ca2+ exchanger and action potential shape. The analysis suggests that the most important reason for the observed effects is a modified normal function of sarcoplasmic Ca2+-ATPase pump by altered diastolic MgATP levels.

Conclusion: The model is able to reproduce qualitatively a sequence of events that correspond well with experimental observations during cardiac excitation-contraction coupling in mammalian ventricular myocytes.

This work was supported by National Biomedical Computational Resource (2 P41 RR08605) and the National Space Biomedical Research Institute (IHF00207).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.