87
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Bioinformatics Analysis of Oligosaccharide Phosphorylation Effect on the Stabilization of the β-Amylase Ligand Complex

, , &
Pages 479-495 | Received 07 May 2008, Accepted 11 Oct 2008, Published online: 11 Dec 2008
 

Abstract

Starch is the most abundant storage carbohydrate produced in plants. The beginning of transitory starch degradation in plants depends mainly on day cycle, posttranslational regulation of enzyme activity, and starch phosphorylation, but the molecular mechanism of these factors' influence is not yet precisely described. The aim of our analysis was to investigate the effect of phosphorylation on the intermolecular energies for stabilization of the complexes between the set of phosphorylated and nonphosphorylated carbohydrate ligands and Solanum tuberosum (L.) β-amylase model. For performing protein-ligand docking procedures and calculating the binding energies, the DOCK6 and Glide 4.5 program suites were applied. We have observed simultaneously the effect of chain elongation, phosphorylation, and chain branching. Results of flexible ligand docking show that phosphorylation as well as chain elongation increase the stabilization of the ligand-protein complex.

ACKNOWLEDGMENTS

The authors thank the Polish Ministry of Science and Higher Education for financial support (Grant no. N302061134 to K.P. and S.O.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.