389
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Azide Position on the Rate of Azido Glucose–Cyclooctyne Cycloaddition

, &
Pages 408-419 | Received 05 Apr 2014, Accepted 03 Jun 2014, Published online: 14 Jul 2014
 

Abstract

The strain-promoted azide–alkyne cycloaddition (SPAAC) is the most widely used bioorthogonal reaction for imaging azide-labeled glycans in living systems. Rapid SPAAC reactions are essential for visualizing biological processes that occur on a short timescale, and efforts to increase SPAAC reaction rates by modulating the cyclooctyne structure have been highly successful. However, optimizing azido sugar structure for improved SPAAC rates has not been explored. In this study, we show that altering azide position on the sugar ring can have a modest but significant impact on SPAAC reaction rate, which has implications for designing and interpreting experiments involving azide-specific bioorthogonal reactions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.