305
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive study of intravenous iron-carbohydrate nanomedicines: From synthesis methodology to physicochemical and pharmaceutical characterization

ORCID Icon, &
Pages 1-39 | Received 16 Mar 2022, Accepted 13 Oct 2023, Published online: 01 Nov 2023
 

Abstract

Administration of intravenous iron is pivotal in the management of iron-deficiency anemia patients. In the past, parenteral iron was administrated as a ferric hydroxide complex that caused severe toxic reactions. The introduction of compounds containing iron in a core surrounded by a carbohydrate shell has circumvented this problem. Intravenous iron complexes, such as iron sucrose and iron carboxymaltose, consist of a polynuclear Fe (III)-oxyhydroxide/oxide core that is coated with a specific carbohydrate molecule. The carbohydrate shell stabilizes the insoluble iron core particles in colloidal suspension form and slows down the release of iron. Moreover, the carbohydrate shell chemistry differences influence the stability of the complex and iron release rate. In particular, this paper discusses the preparation method, physicochemical properties, and characteristics of iron sucrose, ferric derisomaltose, iron carboxymaltose, and ferumoxytol. These products differ in their physicochemical and clinical properties such as molecular weight distribution, particle size, zeta potential, free, and labile iron content, stability and release of iron in serum, and maximum tolerated dose. The first-generation of intravenous iron formulations were replaced with new intravenous iron dextran–free formulations, due to an elevated risk of anaphylactic reactions. Comparatively, the third-generation intravenous iron formulations, such as ferric derisomaltose, iron carboxymaltose, and ferumoxytol, allow higher doses of iron due to high complex stability and safety than the second generation formulations like iron sucrose.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

None.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.