967
Views
217
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation of Metals Using Transgenic Plants

&
Pages 439-456 | Published online: 24 Jun 2010
 

Abstract

An ideal plant for environmental cleanup can be envisioned as one with high biomass production, combined with superior capacity for pollutant tolerance, accumulation, and/or degradation, depending on the type of pollutant and the phytoremediation technology of choice. With the use of genetic engineering, it is feasible to manipulate a plant's capacity to tolerate, accumulate, and/or metabolize pollutants, and thus to create the ideal plant for environmental cleanup. In this review, we focus on the design and creation of transgenic plants for phytoremediation of metals. Plant properties important for metal phytoremediation are metal tolerance and accumulation, which are determined by metal uptake, root-shoot translocation, intracellular sequestration, chemical modification, and general stress resistance. If we know which molecular mechanisms are involved in these tolerance and accumulation processes, and which genes control these mechanisms, we can manipulate them to our advantage. This review aims to give a succinct overview of plant metal tolerance and accumulation mechanisms, and to identify possible strategies for genetic engineering of plants for metal phytoremediation. An overview is presented of what has been achieved so far regarding the manipulation of plant metal metabolism. In fact, both enhanced metal tolerance and accumulation have been achieved by overproducing metal chelating molecules (citrate, phytochelatins, metallothioneins, phytosiderophores, ferritin) or by the overexpression of metal transporter proteins. Mercury volatilization and tolerance was achieved by introduction of a bacterial pathway. The typical increase in metal accumulation as the result of these genetic engineering approaches is 2-to 3-fold more metal per plant, which could potentially enhance phytoremediation efficiency by the same factor. As for the applicability of these transgenics for environmental cleanup, results from lab and greenhouse studies look promising for several of these transgenics, but field studies will be the ultimate test to establish their phytoremediation potential, their competitiveness, and risks associated with their use.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.