1,161
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Rhizobial Association with Non-Legumes: Mechanisms and Applications

, &
Pages 432-456 | Published online: 10 Nov 2009
 

Abstract

It has been known for more than a century that rhizobia can promote the growth of legumes through the formation of nitrogen-fixing nodules, but the interaction of rhizobia with non-legumes has been neglected as an experimental system. During the last couple of decades, work on rhizobial interaction with non-legumes has been done progressively and it has been demonstrated that rhizobia can associate with roots of non-legumes also, without forming true nodules, and can promote their growth by using one or more of the direct or indirect mechanisms of actions. Phytohormone production, secretion of other chemicals like lipo-chito-oligosaccharides (LCOs) and lumichrome, solubilization of precipitated phosphorus and mineralization of organic P, improvement in uptake of plant nutrients by altering root morphology, production of siderophores to meet the iron requirements of the plant under iron-stressed conditions and lowering of ethylene level through ACC deaminase enzyme, are some examples of the rhizobial mechanisms with direct positive effects on non-leguminous plant growth. Indirectly, rhizobia improve the growth of non-legumes through biocontrol of pathogens via antibiosis, parasitism or competition with pathogens for nutrients and space, by inducing systemic resistance in the host plant and through increasing root adhering soil by releasing exopolysaccarides which regulate the water movement and facilitate the root growth. However, no influence or even inhibitory effects of rhizobial inoculation on non-legumes has also been demonstrated in some cases. Plant growth promoting mechanisms of rhizobia and its practical application in non-legumes are the major focus of this review.

ACKNOWLEDGMENTS

We are thankful to Dr. Maria L. W. Sels for editing this manuscript.

Notes

†Formerly, Agrobacterium tumefaciens (CitationSawada et al., 2003).

Formerly, Agrobacterium tumefaciens (CitationSawada et al., 2003).

Formerly, Agrobacterium tumefaciens (CitationSawada et al., 2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.