2,554
Views
93
CrossRef citations to date
0
Altmetric
Original Articles

Inorganic Nitrogen Uptake and Transport in Beneficial Plant Root-Microbe Interactions

, , , &
 

Abstract

Arbuscular mycorrhiza (AM), ectomycorrhiza (ECM) and nitrogen (N) fixation through rhizobia symbioses (RS) play a critical role for plant nutrient use efficiency in natural ecosystems, usually characterized by nutrient limitation, especially regarding nitrogen and phosphate. Substantial evidence has accumulated about how the rational use of microsymbionts’ properties should significantly contribute to decreasing fertilizer and pesticide use in agriculture and forestry. Understanding the mechanisms underlying high N use efficiency by mycorrhizal/rhizobial plants and carbon allocation in a context of mutualistic biotrophic interactions is critical for managing both croplands and forests while taking care of the ecosystem services rendered by microbial symbionts. Availability, uptake and exchange of nutrients in biotrophic interactions drive plant growth and modulate biomass allocation, and these parameters are central to plant yield, a major outcome in the context of high biomass production. To unravel the symbiotic N “transportome” blueprint from various host plant combinations, it is critical to facilitate the first steps favoring the manipulation of crops toward greater nitrogen use efficiency and mycorrhizal or rhizobial ability. The present review addresses current knowledge on inorganic N transport in mycorrhizal/rhizobial symbiosis.

Additional information

Funding

The authors gratefully acknowledge financial support by the ANR (Agence Nationale de la Recherche) (TRANSMUT ANR-10-BLAN-1604-0), the Germaine de Stael program (TRANSBIO 26510SG), the Swiss National Science Foundation (ambizione grant PZ00P3_136651 to P-E.C.), Burgundy Regional Council (PARI Agrale 8), and the Australian Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.