505
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Population Balances for Extraction Column Simulations—An Overview

, &
 

ABSTRACT

This paper reviews the current literature on extraction column simulation when using droplet population modelling. In that regard, numerical methods will be briefly discussed and background information to necessary kernels and correlations as well as parameter evaluation will be presented. This comprises physical and chemically enhanced mass transfer, droplet movement and interactions in stirred columns. Furthermore, the benefits of CFD calculations to resolve local hydrodynamic details or ultra-fast simulation concepts for model-based forward control are covered. Finally, two case studies for an RDC and Kühni extraction column provide in detail the methodology on how to handle a design case which in principle can be extended to other extraction apparatuses.

Nomenclature

Roman symbols

Ac=

Column cross-sectional area (m2)

bn=

Adjustable parameters for breakage models n =1, 2, 3 (-)

B, D=

Birth and death source terms in Equation (2) (m−3 s−1)

c=

Solute concentration (kg m−3)

c=

Continuous phase (-)

cn=

Adjustable parameters for coalescence models n =1, 2, 3, … (-)

CD=

Drag coefficient (-)

CKH=

Constant in Equation (19)&(20) (-) (116)

Cσn=

Interfacial tension constants in Equation (114) (-)

d=

Dispersed phase (-)

d=

Droplet diameter (m)

d30=

Volume mean drop diameter (m)

d32=

Sauter mean drop diameter (m)

dM=

Mother droplet diameter (m)

dN=

Inner orifice (nozzle) diameter (m)

dsw=

Henschkes’ velocity model parameter (rigid-internal circulation) (m)

dη=

Droplet diameter with dominating viscous forces (m)

dσ=

Droplet diameter with dominating surface tension (m)

dΤ=

Droplet diameter with dominating inertia forces (m)

D=

Diffusion coefficient (m2 s−1)

Dax=

Axial dispersion coefficient (m2 s−1)

DCol=

Column diameter (m)

DR=

Rotor diameter (m)

DS=

Stator diameter (m)

DSh=

Rotating shaft diameter (m)

f=

Number density function (m−3)

F=

Function/objective function (-)

FA=

Buoyancy force (N)

Fη=

Viscous force (N)

Fσ=

Force by surface tension (N)

FΤ=

Force by inertia (N)

g=

Gravitational acceleration equal to 9.8 m s−2 (m s−2)

h=

Collision rate frequency (m3 s−1)

Hc=

Compartment height (m)

Hcd=

Hamaker coefficient (N m)

HCol=

Column height (m)

k=

Individual mass transfer coefficient (m s−1)

kv=

Slowing factor (-)

K=

Equilibrium constant (-)

Kb=

Learning parameters for the breakage term in Equation (13) (-)

Kc=

Learning parameters for the coalescence term in Equation (13) (-)

Kdf=

Consistency factor (-)

Kε=

Constant in Equation (62)&(63) (-)

Koy=

Overall mass transfer coefficient in the dispersed phase (m s−1)

L=

Length of column section (m)

=

Mass flow rate (kg s−1)

n=

Stoichiometric constant (-)

n=

Number of droplet classes (-)

nblade=

Number of rotor blades (-)

ndf=

Flow index (-)

ni=

Number density of droplets in class i with diameter di (m−3)

nu=

Variable exponent in Equation (44).(-)

N=

Rotor speed, number of droplets (s−1)

Nc=

Number of stirred compartments (-)

Np=

Number of pivots/particles (-)

Ny=

Number concentration (m−3)

o=

Number of data (-)

p(d)=

Breakage probability (-)

pc=

Coalescence probability (-)

P=

Vector of chemical properties in (-)

P=

Power (kg m2 s−3)

Pd=

Drop size density distribution function m−1)

q1, q2=

Constants in Equation (99) (-)

qn=

Adjustable parameters for daughter droplets number n=1, 2, 3, (-)

Q=

Volumetric flow rate (m3 s−1)

r, r’=

Radius of droplet (m)

Ṙ(z,t)=

Velocities for internal coordinate (m−3 s−1)

sn=

Adjustable parameters for slowing factor models n=1, 2, 3. (-)

S=

Source term (m−3 s−1)

t=

Time (s)

u=

Droplet velocity (m s−1)

uN=

Velocity in the orifice (m s−1)

us=

Superficial velocity (m s−1)

V,v=

Volume (m3)

VT=

Compartment volume (m3)

x, y=

Weight fraction of solute in the referred phase (kg kg−1)

Ẋ(z,t)=

Velocities for external coordinate (m−3 s−1)

z=

Space coordinate (m)

Greek lettters

αsw=

Steepness of crossover parameter of Henschkes’ velocity model (-)

αdef=

Parameter of Henschkes’ velocity model of deformed droplets (-)

α15=

Parameter of Henschkes’ velocity model of oscillating droplets (-)

α16=

Characterize the sharpness of the transaction between velocities (-)

βn=

Daughter droplet distribution based on droplet number (m−1)

ϑ=

Mean number of daughter droplets (-)

Γ=

Breakage frequency (s−1)

δ(z-zy)=

Dirac delta function (m−1)

Δ=

Increment (-)

ε=

Energy dissipation (mechanical power dissipation per unit mass) (m2 s−3)

κf=

Forward reaction constant (-)

κr=

Reward reaction constant (-)

η=

Dynamic viscosity kg m−1 s−1)

λ=

Coalescence efficiency (-)

λη=

Viscosity ratio of dispersed to continuous phase (-)

ν=

Kinematic viscosity (ν= η/ρ) (m2 s−1)

ρ=

Density (kg m−3)

σ=

Surface tension (N m−1)

τm=

Residence time (s)

φs=

Relative free cross-sectional stator area (m2 m−2)

ϕ=

Holdup/volume fraction (volume concentration) (-)

ψ=

Internal and external coordinates vector [d cy z t] (-)

ω=

Coalescence rate (m3 s−1)

ωu=

Angular velocity (ωu= 2 π N) (s−1)

Subscripts

Aq=

Aqueous

b=

Breakage

c=

Coalescence, concentration

cal=

Calculated

cir=

With internal circulation

crit=

Critical

d=

Droplet

def=

Deformed

exp=

Experimental

I=

Species index

in=

Inlet (feed)

k=

Model number: 1, 2, 3, …

max=

Maximum

min=

Minimum

n=

Number of parameters: 1, 2, 3, …

opti=

Optimum

org=

Organic

os=

Oscillating

r=

Relative

rig=

Rigid drop condition

s=

Superficial

sph=

Spherical

stab=

Stable

t=

Terminal

tot=

Total

x=

Aqueous or heavy (continuous) phase

y=

Organic or light (dispersed) phase

Superscript

.=

Derivative with respect to time

*=

Equilibrium

b=

Breakage

c=

Coalescence

d=

Droplet

in=

Inlet

List of dimensionless

Ar=ρcΔρgd3ηc2=

Archimedes number

Box=LuDax,x=

Bodenstein number of the continuous phase

Boy=LuDax,y=

Bodenstein number of the dispersed phase

E\"o=gΔρd2σ=

Eötvös number

FrN,Δρ=uN2dNgρyΔρ5/4=

modified Froude number

Mo=gΔρηc4ρc2σ3=

Morton number

NP=PN3DR5ρx=

Power number (Newton number)

Oh=ηyσdρy=

Ohnesorge number

Pex=duDx=

Péclet number of the continuous phase

Pey=duDy=

Péclet number of the dispersed phase

ReD=ρxDR2ωuηx=

Reynolds number in

ReR=ρxDR2Nηx=

Reynolds number of rotor/agitator

Rex=ρxduηx=

Reynolds number of the continuous phase

Rey=ρyduηy=

Reynolds number of the dispersed phase

Scx=ηxρxDx=

Schmidt number of the continuous phase

Scy=ηyρyDy=

Schmidt number of the dispersed phase

Shx=kxdDx=

Sherwood number of the continuous phase

Shy=kydDy=

Sherwood number of the dispersed phase

We=ρxDR3N2σ=

Weber number

Wed=ρxdDR2N2σ=

Droplet Weber number

Wed,Go=ρxε2/3d5/3σ=

Droplet Weber number[Citation171]

Wem,Ba=ρxdDR2N2Ncrit2σ=

Modified Weber number[Citation173]

Wemod=ρx0.8ηx0.2dDR1.6(2π)1.8(N1.8Ncrit1.8)σ=

Modified Weber number[Citation118]

WeN=uN2dNρyσ=

Weber number for droplet formation[Citation156]

WeSLM=ρx0.5ηx0.5dDRN1.5Ncrit1.5σ=

Modified Schlichting laminar Weber number[Citation169]

List of abbreviations

ADQMOM=

Adaptive Direct QMOM

ba-w=

butyl acetate (d)-water

ba-a-w=

butyl acetate (d)-acetone-water

BVSQMOM=

bivariate sectional QMOM

CFD=

Computational Fluid Dynamics

CM=

Classes Method

Corr.=

Correlation

DN=

Diameter Nominal

DPBM=

Droplet Population Balance Model

DSD=

Droplet Size Distribution

EFCE=

European Federation of Chemical Engineering

EFPT=

Extended Fixed Pivot Technique

Equation=

Equation

Exp.=

Experimental

FPM=

Finite Pointset Method

FPQMOM=

Fixed Pivot QMOM

iso-w=

isotridecanol (d)-water

LFPQMOM=

Local Fixed Pivot QMOM

LLEC=

Liquid-Liquid Extraction Column

LLECMOD=

Liquid-Liquid Extraction Column MODule

MOM=

Method Of Moments

MOPOSPM=

modified OPOSPM

M-QMOM=

Modified QMOM

MPEM=

Moving Particle Ensemble Method

NQMOM=

Normalized QMOM

OMST=

Online Monitoring and Simulation Tool

OPOSPM=

One Primary One Secondary Particle Method

Opti.=

Optimized

PBE=

Population Balance Equation

PBM=

Population Balance Model

POPMOD=

Population Balance Module

PPBLab=

Particulate Population Balance Laboratory

RDC=

Rotating Disc Contactor

ReDrop=

Representative DROPs

Ref.=

Reference

rpm=

revolution per minute

SDPBE=

Spatially Distributed Population Balance Equation

Sim.=

Simulated

SQMOM=

Sectional Quadrature Method Of Moments

t-w=

toluene (d)-water

t-a-w=

toluene (d)-acetone-water

Acknowledgments

The authors wish to thank the German Science Foundation (DFG, Bonn) for financial support and PD Dr.-Ing. M. W. Hlawitschka for his fruitful discussions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.