64
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Vacancy Tuning in Li,V-Substituted Lyonsites

ORCID Icon, , &
 

ABSTRACT

The lyonsite structure, characterized by the formula A4M3O12, is a relatively understudied tunneled crystal structure. This host structure is known to be compositionally flexible, able to incorporate a number of cations in various oxidation states into the A site. In the parent compound Co3.75V1.5Mo1.5O12, it is apparent that a stoichiometric vacancy of 0.25 is unavoidable as a result of Coulombic repulsion. This work focuses on the systematic elimination of vacancies by chemically introducing guest Li ions while maintaining host integrity. A full solid solution was found to exist with the formula □0.25–1/8xLixCo3.75–7/8xV1.5–3/4xMo1.5+3/4xO12 (0 ≤ x ≤ 2), terminating at the known end member Li2Co2Mo3O12. Lattice refinements on PXRD data confirmed the isostructural nature of the whole series, and detailed structural analysis revealed that competition between Li and Co in the same crystallographic site is unequal, with Li exhibiting a stronger site preference for larger interstitial sites. Diffuse reflectance analysis revealed that the optical band gap is directly tunable with x, and supporting structure-property relationships were also explored via magnetometry and dielectric measurements.

Acknowledgments

We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Declaration of interest

The authors declare no conflict of interest.

Additional information

Funding

This research was supported by the National Science Foundation under Grant [DMR 1508527].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.