79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation on the Sulfadiazine Schiff Base Adsorption Ability of Y(III) Ions from Nitrate Solutions, Kinetics, and Thermodynamic Studies

, , ORCID Icon &
 

ABSTRACT

Sulfadiazine Schiff base (SDSB) was prepared using an inexpensive technique by modification of sulfadiazine drug (SD) to be used as an adsorbent material for recovery of Y(III) ions from aqueous solutions. Chemical and physical characterizations of SDSB were performed using different techniques. The maximum static adsorption capacity of the modified SD was 0.9 mmolg−1 for Y(III) ions and at pH 5.0. The kinetics results revealed that the sorption of Y(III) ions upon the synthesized SDSB followed the pseudo-second-order with R2 of >0.999. Temkin, Dubinin – Radushkevich, Freundlich, and Langmuir models accurately described the adsorption isotherm data. The activation energy (Ea) for adsorption was 17.52 kJmol−1, indicating the process is to be chemisorption. Thermodynamic characteristics with ΔHo of 11.33 kJmol−1 and a ΔSo 110.2 Jmol−1K−1. Using FT-IR and EDAX analysis proved the yttrium adsorption upon the SDSB. The desorption process for Y(III) ions was successfully achieved using 1 M HNO3 and it reduced from 95% to 70% after five consecutive cycles. A pre-concentration process for yttrium ions presented in a waste solution was achieved using SDSB adsorbent with a pre-concentration factor of about 10. As a result, it is regarded as a promising adsorbent for Y(III) ions in a variety of industrial applications.

Acknowledgments

The authors wish to thank the Nuclear Materials Authority, Egypt, and the Faculty of Science, Menoufia University, Egypt for their kind following-up, scientific support, and untiring in assisting in finishing this work. Special thanks are extended to National Liver Institute, Menoufia University for their kind support and regular work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/07366299.2023.2186180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.