Publication Cover
Drying Technology
An International Journal
Volume 24, 2006 - Issue 7
345
Views
77
CrossRef citations to date
0
Altmetric
Original Articles

Dewatering of Biomaterials by Mechanical Thermal Expression

, , , , &
Pages 819-834 | Published online: 06 Feb 2007
 

Abstract

Dewatering by mechanical thermal expression (MTE) for a range of materials is explored using a laboratory-scale MTE compression-permeability cell. It is shown that MTE can be used to effectively dewater a range of biomaterials including lignite, biosolids, and bagasse. The underlying dewatering mechanisms relevant to MTE, namely (1) filtration of water expelled due to thermal dewatering, (2) consolidation, and (3) flash evaporation, are discussed. At lower temperatures, the dominating dewatering mechanism is consolidation, but with increasing temperature, thermal dewatering becomes more important. A major focus is an investigation of the effects of processing parameters, including temperature (20 to 200°C) and pressure (1.5 to 24 MPa), on material permeability, a fundamental dewatering parameter. It is illustrated that permeability is particularly dependent on the processing temperature, owing to changes in both the material structure and the water properties. In addition, a comparison of permeability in the direction of applied force (axial) and perpendicular to the direction of applied force (radial) is presented. It is shown that, due to alignment of particles under the applied force, the permeability and, hence, rate of water removal in the radial direction is greater than in the axial direction. SEM micrographs are presented to illustrate the particle alignment.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial and other support received for this research from the Cooperative Research Centre (CRC) for Clean Power from Lignite, which is established and supported under the Australian Government's Cooperative Research Centres program.

The authors also acknowledge Monash Micro Imaging for their assistance in producing the SEM images.

Notes

*Values from the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.