Publication Cover
Drying Technology
An International Journal
Volume 26, 2008 - Issue 11
1,115
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Modeling of Rotary Drying of Woody Biomass

&
Pages 1344-1350 | Published online: 07 Oct 2008
 

Abstract

Woody biomass in the form of forestry industry residues has been recognized as a promising resource for renewable energy and liquid fuels. Drying of the woody biomass is one of the key operations in development of the energy conversion technologies. Rotary drying is an effective method due to the enhanced contact between the solids and the drying medium (hot air). In this work, a mathematical model was developed to simulate the drying of the woody biomass as chips in a rotary dryer, based on energy and mass balance and transfer, experimental drying kinetics of the wood chips, and using literature correlations for the residence time. A new correlation between the theoretical maximum drying rate and the actual constant drying rate for the wood chips was obtained from the drying experiments, which was incorporated in the drying model. The model was applied both for cocurrent and countercurrent rotary dryers, and the simulation results are consistent with the observed trend. However, the accuracy of the model needs to be further investigated through experimental validation of the residence time correlation.

ACKNOWLEGEMENTS

This project is funded by the New Zealand Foundation of Research, Science and Technology. The authors greatly appreciate helpful discussions with Professor Arun Mujumdar of the National University of Singapore and Professor Tim Langrish of the University of Sydney in preparing this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.