Publication Cover
Drying Technology
An International Journal
Volume 30, 2012 - Issue 1
1,386
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Generation of Product Structures During Drying of Food Products

, &
Pages 97-105 | Published online: 07 Nov 2011
 

Abstract

The sensorial profile, nutritional quality, and rehydration properties of dried food depend on the structure of the dehydrated material. The molecular, supramolecular, micro-, and macrostructure is influenced by the applied drying conditions. During drying of foods, specific product structures can be generated. For instance, during drying at elevated temperatures, Maillard reactions are accelerated. Thus, peptides and reducing sugar molecules are transformed into taste-active molecules. During drying, proteins are also denatured, and their three-dimensional structure changes accordingly. Following this denaturing, proteins can coagulate. Furthermore, gelling of starch is observed during drying of food. In addition to these reactions, isomerization, oxidation, and various other reactions are accelerated during drying at higher temperatures. Thus, the molecular structure of food products changes significantly during most drying processes. Depending on the drying conditions, different supramolecular structures of solid food products are generated during dehydration of solutions. The drying velocity has a significant impact on the characteristics of the generated supramolecular structure. Fast dehydration of liquid products leads to amorphous structures, whereas slow drying allows substances with low molecular weight to crystallize. Furthermore, the chosen drying technology, solid content of the wet product, composition, pressure fluctuations during drying, and the kinetics of mass transfer influence the generation of microstructures. In addition, the liquids can be enriched with gas before drying in order to increase the product's porosity. Finally, the macrostructure and the optical appearance of the dry product are affected by the drying technology applied and the chosen drying conditions.

Notes

This article was a Keynote Lecture at the 17th International Drying Symposium (IDS2010), held October 3–6, 2010, in Magdeburg, Germany. Other articles from IDS2010 were published in special issues of Drying Technology, 29(13) and 29(16).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.