Publication Cover
Drying Technology
An International Journal
Volume 30, 2012 - Issue 6
619
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Shrinkage and Interior Humidity of Concrete under Dry–Wet Cycles

, , &
Pages 583-596 | Published online: 21 Mar 2012
 

Abstract

The dry–wet cycle is one of the aggressive environmental conditions suffered by concrete. This article focuses on the experimental study and theoretical simulation of shrinkage of concrete during dry–wet cycles. The experimental results show that the interior relative humidity of concrete is periodically changed during dry–wet cycles. As concrete undergoes wetting, a fast increase in interior humidity takes place in a short time and then the relative humidity reaches a stable level, which depends on the strength of concrete or on the water-to-cement ratio of concrete. In contrast, as concrete undergoes drying, the interior relative humidity does not drop immediately but decreases in a gradual manner. Accordingly, the shrinkage of concrete during dry–wet cycles is also periodically changed, exhibiting shrinkage as drying and expansion as wetting. Based on the experimental findings, a model for shrinkage predictions of concrete during dry–wet cycles is developed. The model is based on the capillary tension created in capillary pores in concrete and uses the interior relative humidity (RH) as the driving parameter for shrinkage predictions. The model predictions on the development of shrinkage strain under plastic sealed and dry–wet conditions are compared with experimental results and a reasonable agreement was found.

ACKNOWLEDGMENT

This work was supported by a Specialized Research Fund for the Doctoral Program of Higher Education (20100002110016), a grant from the National Science Foundation of China (No. 51178248), and a grant from the National Basic Research Program of China (No. 2009CB623200) to Tsinghua University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.