231
Views
7
CrossRef citations to date
0
Altmetric
Selected Papers from the 19th International Drying Symposium (IDS 2014), Part 2

Influence of Plate Size on the Evaporation Rate of a Heated Droplet

, &
 

Abstract

The purpose of this study is to numerically investigate how the width of a plate influences natural convection around a droplet. Droplets evaporating on hot surfaces have many applications including drying of dishes and paint. Evaporation rate and deposition of particles withheld in the fluid are of great importance in both cases. As a first step to investigate how the drying rate and deposition mechanisms can be controlled, this work aims to investigate how the external flow around a water droplet influences the evaporation rate. Natural convection caused by the hot plate on which the droplet rests is considered and the effect of different widths is examined. Results show that an extension of the plate past the droplet will increase the maximum velocity in the domain due to natural convection while the flow close to the surface is decreased due to the no-slip condition and temperature gradient. A decrease of the evaporation rate is therefore observed when the plate is extended past the droplet as compared to the case when the plate and droplet have the same diameter. Simulations furthermore show that the results from the heat and mass transfer analogy only compare well to the results of Fick's law when the droplet and plate have the same width.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.