Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 3
1,372
Views
68
CrossRef citations to date
0
Altmetric
Original Articles

Determination of appropriate effective diffusivity for different food materials

, , &
 

ABSTRACT

Effective diffusivity is the most important key parameter needed in the analysis, design, and optimization of heat and mass transfer during food drying process. In general, two types of effective diffusivities are used to develop the mathematical modeling of food drying, namely, moisture-dependent effective diffusivity (MDED) and temperature-dependent effective diffusivity (TDED). However, no study has extensively investigated which effective diffusivity is more accurate in predicting drying kinetics. The main goal of this study is to determine the appropriate effective diffusivity for predicting the drying kinetics. Drying models were developed for different fruits and vegetables based on moisture-dependent and temperature-dependent effective diffusivities. COMSOL Multiphysics, a finite element-based engineering simulation software is used to solve the coupled heat and mass transfer equations. 3D moisture profiles were developed to investigate the spatial moisture distribution during drying. Extensive experimental investigation on five types of fruits and vegetables was conducted and results were compared with the simulated results. The experiments were repeated thrice, and the average of the moisture content at each value was used for constructing the drying curves. Close agreement between experimental and simulated results validates the models developed. It was observed that the moisture profile and temperature profile in case of MDED were more closely fitted with the experimental results. For all fruits and vegetables, the moisture ratio with MDED was significantly lower than moisture ratio with TDED. This finding confirms that the MDED is more accurate for predicting kinetics in food drying. Moreover, the moisture ratio of apple was lowest whereas pear showed the highest moisture ratio. On the other hand, carrot showed a considerably lower moisture ratio compared to potato.

Acknowledgment

The authors would like to thank Prof. Troy Farrell for his suggestions and guidance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.