Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 5
312
Views
11
CrossRef citations to date
0
Altmetric
Articles

Stabilization and dewatering of wastewater treatment plant sludge using combined bio/Fenton-like oxidation process

, &
 

ABSTRACT

Wastewater sludge usually contains large amounts of water and organic materials; therefore, its stabilization and dewatering are of particular importance. The present study aimed to investigate the possibility of sludge stabilization and dewatering from wastewater sludge by bioleaching (Thiobacillus ferrooxidans), Fenton/bioleaching, and bioleaching/Fenton-like processes. To evaluate sludge stabilization and dewatering, specific resistance to filtration (SRF), volatile suspended solids (VSS), total suspended solids (TSS), and soluble chemical oxygen demand (SCOD) were measured. In biological treatment with T. ferrooxidans with Fe2+ (2 g L−1), 99.75, 33, 37, and 72% reduction were observed in SRF, VSS, TSS, SCOD, respectively, after 2 days. In the combined treatment of Fenton before bioleaching (including Fe2+ 2 g L−1 and H2O2 1 g L−1 with Fenton oxidation for 30 min followed by biological treatment with T. ferrooxidans for 2 days), the reduction rates in TSS, VSS, SCOD, and SRF were 40.18, 40.88, 60.95, and 75.43%, respectively. In treatment with the combined method of bioleaching before Fenton-like oxidation, the removal rates of the aforementioned parameters were 52.5, 54.4, 88, and 99.82%, respectively. In comparison to Fenton oxidation and bioleaching alone, combined biological method of bioleaching/Fenton-like oxidation using a lower dose of H2O2 and Fe2+ significantly improved sludge dewatering and stabilization.

Acknowledgment

The authors would like to thank Ms. A. Keivanshekouh at the Research Improvement Center of Shiraz University of Medical Sciences for improving the use of English in the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.