Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 13
1,146
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Reduction of a model for single droplet drying and application to CFD of skim milk spray drying

, &
 

ABSTRACT

In this work, a novel methodology for the development of a high-accuracy computational fluid dynamics (CFD) model for the spray-drying process is described. Starting point is an own spatially resolving model of droplet/particle drying, which was developed and validated on the basis of a series of single droplet drying (SDD) experiments. This sophisticated model is transformed to a much simpler version: the characteristic drying curve approach, after running the full SDD model in a wide range of operating conditions. Then, the obtained reduced model is implemented into the CFD solver. The CFD spray-drying model takes into account the hydrodynamics of the continuous phase, particle drying kinetics, changes in the particle diameter, and the heat loss from the drying chamber to the environment. Validation of the entire procedure is provided by data obtained from drying experiments performed in a co-current laboratory spray tower. High accuracy of the developed CFD model of skim milk spray drying has been found for both phases, for the mean outlet temperature of the continuous phase (air) and for the change in average particle moisture content along the spray tower (discrete phase).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.