Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
244
Views
2
CrossRef citations to date
0
Altmetric
Articles

Interdependence of shrinkage behavior between wood macroscopic and cellular level during moisture content loss

, &
Pages 3241-3248 | Received 08 Oct 2021, Accepted 08 Dec 2021, Published online: 23 Dec 2021
 

Abstract

Wood is widely considered to be a green and renewable building material. However, many of the challenges to using wood as an engineering material arise from the shrinkage and swelling behaviors during moisture content (MC) loss or gain. In this study, the shrinkage behavior of Queensland peppermint (Eucalyptus exserta F. V. Muell) wood was investigated at the macroscopic and cellular levels, and the interdependence between the two levels was explored. Results revealed that the tangential shrinkage of 2% and radial shrinkage of 1% was observed as MC decreased from about 60% to 32% in the macroscopic level. The most obvious anisotropic shrinkage was presented at the MC region of 32–22%, and the ratio of T/R was ranged from 1.6 to 1.75 below the fiber saturation point. At the cellular level, a considerable shrinkage was observed at MC of 42%. The cell wall was shrunk, but the lumen in radial (TR plane) was expanded with MC loss. The shrinkage of the total wood cell showed a linear relationship with MC. The shrinkage ratio of T/R was maintained around 1.5 below the fiber saturation point, indicating that the MC states have little effect on the anisotropic shrinkage. Besides, the shrinkage value at the macroscopic level was slightly smaller than the cellular level, but the anisotropic shrinkage showed an opposite trend.

Additional information

Funding

This work was financed by a Grant-in-aid for scientific research from the Youth Program of National Natural Science Foundation of China (No. 31800478).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.