737
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production, characteristics, and potential applications

, &
Pages 915-947 | Received 22 Jun 2022, Accepted 22 Dec 2022, Published online: 12 Jan 2023
 

Abstract

Aerogels are three-dimensional nanostructures of non-fluid colloids connected to porous networks made of loosely packed bonded particles. They are often manufactured utilizing the sol-gel technique following a drying procedure like supercritical, freeze, or ambient pressure drying. It is the lightest solid material and has several unique qualities, including excellent insulation. Intrinsic brittleness and porous nature make their processing and handling complex, which restrict applicability in several real-world dynamic situations. An effective strategy to strengthen the silica aerogel structure is manufacturing composites with an incorporated fibrous material, which expands their uses considerably. This study covers the scientific synthesis, characterization, and applications of silica aerogel. It encourages silica aerogel composites/blankets that are strengthened by additives and fibrous material made from a wide variety of fibers and fabrics, as well as their manufacturing processes and properties. The effect of fibrous material (fiber and fabric) embedment on the final properties of composites has been extensively discussed, considering the amount of loading in the matrix and their unique characteristics, such as density, shrinkage, mechanical, thermal, and acoustic properties. Fiber-reinforced silica aerogel composites’/blankets applications are briefly discussed, indicating advancements in aerogel functions such as thermal sensors, acoustic insulators, and technical textiles such as protective clothing, medical textiles, and insulation blankets.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.