2,069
Views
99
CrossRef citations to date
0
Altmetric
Review Article

Algal polysaccharides: potential bioactive substances for cosmeceutical applications

ORCID Icon, , & ORCID Icon
Pages 99-113 | Received 03 Mar 2018, Accepted 13 Jul 2018, Published online: 09 Sep 2018
 

Abstract

The cosmetics industry is one of the most profitable in the world today. This multi-billion-dollar industry has a profound sociological impact worldwide. Its influence is global, with most individuals being concerned with conserving their physical appearance, beauty, and youth. The consumers’ desire for novel, better, and safer products has stimulated the utilization of natural-product-based cosmeceutical formulations over synthetic chemicals. With remarkable advancements in marine bioresource technology, algal polysaccharides have gained much attention as bioactive ingredients in cosmeceuticals. Algae biosynthesize a variety of polysaccharides including fucoidans, alginates, carrageenans, galactans, agar, porphyran, glucans, and ulvans, all of which exhibit distinctive structural and functional properties. Many of these materials have been proven to possess skin-protective effects, including anti-wrinkle, lightening, moisturizing, UV protective, antioxidative, and anti-inflammatory activity. Moreover, they have a wide spectrum of physicochemical properties, such as the ability to form hydrogels, which extend their utilization as emulsifiers, stabilizers, and viscosity controlling ingredients in cosmeceuticals. Accordingly, algal hydrocolloids and their synthetic derivatives can also be applied in tissue engineering and cosmetic surgery. The challenge is to increase awareness about these polysaccharides and consequently generate value-added products. This review discusses the beneficial biological and physicochemical properties of algal polysaccharides, highlighting their potential in cosmeceutical applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by a grant from the Marine Biotechnology Program [20170488] funded by the Ministry of Oceans and Fisheries, Korea.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.