1,645
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions

&
Pages 508-523 | Received 20 Apr 2018, Accepted 22 Dec 2018, Published online: 02 Apr 2019
 

Abstract

Glucosinolate–myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate–myrosinase system from an ecological and nutraceutical perspective.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by SERB-DST.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.