1,404
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota

, , & ORCID Icon
Pages 524-540 | Received 01 Jun 2018, Accepted 04 Jan 2019, Published online: 27 Feb 2019
 

Abstract

Diabetes mellitus (DM) increases the risk of cardiovascular diseases and other secondary complications, such as nephropathy, neuropathy, retinopathy, etc. The important risk factors for the pathogenesis of DM are aging, family history, sedentary lifestyle, unhealthy dietary habits, and obesity. Evidence from epidemiological studies also indicates that DM is characterized by specific alterations in the human gut microbiota (GM). GM transplantation in rodents and humans revealed that a specific GM constituent can be the cause and not just the consequence of the DM condition and complications. These findings suggest a potential role of GM in human health, disease prevention, and treatment. Dietary intervention studies using dietary fibers (DFs) suggested that modulation of the GM can suppress the metabolic risk markers in humans. However, a causal role of GM in such studies remains unexplored. Long-term follow-up studies disclosed that the diet rich in insoluble and non-viscous fibers are responsible for DF-mediated antidiabetic activities, while soluble and viscous fibers have little influence on DM despite having a profound impact on glycemia. However, general conclusions cannot be drawn simply based on these findings. Long-term follow-up studies are urgently required in this area to explore the therapeutic potential of different DFs in treating DM and to delineate the exact role of GM involvement. Here we review and discuss the signature of GM during DM, antidiabetic activity of metformin via GM modulation, DFs from different sources and their antidiabetic activity, and the possible role of GM involvement.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

This work was supported by Grants from National Key Technology R&D Program of China (2018YFD0700203) and National Natural Science Foundation of China (U1703105).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.