206
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods

, , , , , , & ORCID Icon show all
Pages 924-940 | Received 15 Jul 2021, Accepted 21 May 2023, Published online: 16 Jul 2023
 

Abstract

Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China (32172183), Innovation Capability Support Program of Shaanxi, China (2020TD-042), and Key Research and Development Plan of Shaanxi Province, China (2019ZDLNY01-02-02).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.