24
Views
68
CrossRef citations to date
0
Altmetric
Original Articles

An Efficient Automated Computer Vision Based Technique for Detection of Three Dimensional Structural Motifs in Proteins

, , &
Pages 769-789 | Received 21 Jun 1991, Published online: 21 May 2012
 

Abstract

As the number of available three dimensional coordinates of proteins increases, it is now recognized that proteins from different families and topologies are constructed from independent motifs. Detection of specific structural motifs within proteins aids in understanding their role and the mechanism of their operation. To aid in identification and use of these motifs it has become necessary to develop efficient methods for systematic scanning of structural databases. To date, methods of structural protein comparison suffer from at least one of the following limitations: (1) are not fully automated (require human intervention), (2) are limited to relatively similar structures, (3) are constrained to linear alignments of the structures,(4) are sensitive to insertions, deletions or gaps in the sequences or (5) are very time consuming. We present a method to overcome the above limitations. The method discovers and ranks every piece of structural similarity between the structures compared, thus allowing the simultaneous detection of real 3-D motifs in different domains, between domains, in active sites, surfaces etc. The method uses the Geometric Hashing Paradigm which is an efficient technique originally developed for Computer Vision. The algorithm exploits the geometrical constraints of rigid objects, it is especially geared towards recognition of partial structures in rigid objects belonging to large data bases and is straight forwardly parallelizable. Computer Vision techniques are for the first time applied to molecular structure comparison, resulting in an efficient, fully automated tool. The method has been tested in a number of cases, including comparisons of the haemoglobins, immunoglobulins, serine proteinases, calcium binding proteins, DNA binding proteins and others. In all examples our results were equivalent to the published results from previous methods and in some cases additional structural information was obtained by our method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.