11
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Conformational Analysis of Receptor Selective Tachykinin Analogs: Senktide and Septide

, , &
Pages 429-439 | Received 31 Mar 1992, Published online: 21 May 2012
 

Abstract

The conformational behavior in solution of two receptor selective tachykinin agonists, senktide (succiny1-D-F-MeF-G-L-M-NH2) and septide (pQ-F-F-P-L-M-NH2) is described. Two dimensional cross relaxation NMR spectroscopy is used together with coupling constant data to obtain interproton distance constraints. These results are used in conjunction with semi-empirical energy computations to indicate favorable conformations. Senktide is found to have a high degree of conformational order which is attributed to rotational restriction associated with the N-methylation of phenylalanine. The lowest energy conformation in accord with the experimental interproton distances contains a β-turn. Interproton distances indicate that septide exists as a random coil or in an extended chain conformation. Energy computations suggest that septide is primarily an extended chain with internal reorientation restricted by the proline residue. These results may be related to the selectivity of these peptides for different receptors, in that the analogs, with conformations more stable than tachykinins, are more receptor selective.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.