16
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Three-Dimensional Energy-Minimized Model of Human Type II “Smith” Collagen Microfibril

, &
Pages 1129-1159 | Received 23 Mar 1995, Published online: 21 May 2012
 

Abstract

A procedure is described for constructing a three-dimensional model of fibril-forming human type II collagen based on the “Smith” microfibril model. This model is a complex of five individual collagen triple-helical molecules, and is based on known structural parameters for collagen. Both experimental and theoretical data were used as constraints to guide the modeling. The resulting fibril model for type II collagen is in agreement with both physical and chemical characteristics produced by experimental staining patterns of type II fibrils. Some advantages of the type II model are that the stereochemistry of all the sidechain groups is accounted for, and specific atomic interactions can now be studied. This model is useful for: development of therapeutics for collagen related diseases; development of synthetic collagen tissues; design of chemical reagents (i.e., tanning agents) to treat collagen-related products; and study of the structural and functional aspects of type II collagen. Described is the procedure by which the Smith microfibril of type II collagen was developed using molecular modeling tools, validation of the model by comparison to electron-microscopic images of fibril staining patterns, and some applications of this microfibril model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.