9
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

HMG Box Proteins Interact With Multiple Tandemly Repeated (GCC)n•(GGC)m DNA Sequences

, , , &
Pages 235-238 | Received 20 Jul 1996, Published online: 21 May 2012
 

Abstract

A number of tandemly repeated DNA sequences have the ability to form hairpin structures by forming non-standard base pairs. When (GCC)15 and (GGC)15 strands are annealed together, the expected duplex is the only product. However, when (GCC)15 is annealed with (GGC)10, depending on the relative concentrations, up to five complexes can be detected in native gels. Three of these species are susceptible to limited digestion by Exo VII, suggesting they are duplexes containing single stranded tails. The remaining two bands are resistant to the enzyme, and have low mobility on native gels, consistent with branched structures. The latter complexes bind HMG box proteins, members of a highly abundant class of nonhistone proteins of the nucleus. These proteins, modeled in this study by the second box fragment from rat HMG1, HMGb, interact strongly with branched or chemically modified DNA, relative to normal duplexes. The expansion of triplet repeats in genomic DNA is associated with tumor formation as well with a variety of heritable neurologiocal disorders. It is our thesis that the stability of branched intermediate structures that arise in replication of these sequences and promote expansion can be influenced directly by the presence of two highly abundant proteins in the cell nucleus: the HMG box proteins, HMG 1/2, and the historie HI, which associates with HMG 1/2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.