24
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Single Strand Targeted Triplex Formation: Physicochemical and Biochemical Properties of Foldback Triplexes

, &
Pages 79-90 | Received 14 May 1996, Published online: 21 May 2012
 

Abstract

Oligodeoxyribonucleotides containing both Watson-Crick and Hoogsteen hydrogen bonding domains joined by a nucleotide loop (FTFOs) are studied for their binding affinity and specificity to the DNA and RNA single-stranded targets. Thermal denaturation studies reveal that FTFOs have high binding affinity for their targets than do antisense (duplex forming) and antigene (triplex forming) oligonucleotides, because of involvement of both the Watson-Crick and Hoogsteen domains in the interaction. Studies with FTFOs containing different sizes and sequences of loops show that 4–6 bases long loops are optimum for binding; loop sequence does not have a dramatic effect on binding. The FTFOs have greater sequence specificity than do antisense and antigene oligonucleotides because they read the target sequence twice. S1-, PI- and mung bean nuclease protection assays show that the DNA FTFO forms a stable triplex with the DNA target strand, but a weak or no triplex with the RNA target strand. Gel mobility shift assay is used to determine binding of FTFOs to DNA and RNA targets. The circular dichroism (CD) spectrum of the foldback triplex formed with the DNA target strand resembles the B-DNA spectrum, suggesting that the triplex has a B- type of conformation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.