97
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the Structures of the Metal-thiolate Binding Site in Zn(II)-, Cd(II)-, and Hg(II)-Metallothioneins Using Molecular Modeling Techniques

&
Pages 393-406 | Received 01 Aug 1996, Published online: 21 May 2012
 

Abstract

The first fully energy-minimized structures for a series of structurally related metal complexes of the important mammalian metal binding protein metallothionein are described. The structures were calculated based on structural information obtained from existing spectroscopic and crystallographic data, and minimized using molecular mechanics (MM2) techniques. A two domain structure, with stoichiometrics of M(II)3−(Scys)9 and M(II)4−(Scys)11 where M = zinc(II), cadmium(II), and mercury(II), was assembled and minimized. The resultant three-dimensional structure closely resembled that of rat liver Cd5Zn2−MT 1 obtained by analysis of x-ray diffraction data [A. H. Robbins, D. E. McRee, M. Williamson, S. A. Collett, N. H. Xuong, W. F. Furey, B. C. Wang and C. D. Stout, J. Mol. Biol. 221, 1269–1293 (1991)]. Minimized structures for Zn7−MT, Cd7−MT, and Hg7−MT are reported. Deep crevices that expose the metal-thiolate clusters are seen in each structure. However, for the mercury-containing protein, much of the mercury-thiolate structure is visible and it is proposed that this provides access for extensive interaction between solvent water molecules and the mercury(II), resulting in the observed distortion away from tetrahedral geometry for Hg7MT. Volume calculations are reported for the protein metallated with 7 Zn(II), Cd(II), or Hg(II). A series of structural changes calculated for the step-wise isomorphous replacement of Zn(II) by Cd(II) and Hg(II) in the Zn4S11 α domain are shown.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.