38
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A Molecular Mechanics and Database Analysis of the Structural Preorganization and Activation of the Chromophore-Containing Hexapeptide Fragment in Green Fluorescent Protein

, &
Pages 441-448 | Received 12 Dec 1996, Published online: 21 May 2012
 

Abstract

We propose that heterologous posttranslational chromophore formation in green fluorescent protein (GFP) occurs because the chromophore-forming amino acid residues 65SYG67 are preorganized and activated for imidazolinone ring formation. Based on extensive molecular mechanical conformational searching of the precursor hexapeptide fragment (64FSYGVQ69), we suggest that the presence of low energy conformations characterized by short contacts (∼3Å) between the carbonyl carbon of Ser65 and the amide nitrogen of Gly67 accounts for the initial step in posttranslational chromophore formation. Database searches showed that the tight turn required to establish the key short contact is a unique structural motif that is rarely found, except in other FSYG tetrapeptide sequences. Additionally, ab initio calculations demonstrated that an arginine side chain can hydrogen bond to the carbonyl oxygen of Ser65, activating this group for nucleophilic attack by the nearby lone pair of the Gly67 amide nitrogen. We propose that GFP chromophore-formation is initiated by a unique combination of conformational and electronic enhancements, identified by computational methods.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.